Spectrum of the product of independent random Gaussian matrices.
نویسندگان
چکیده
We show that the eigenvalue density of a product X=X1X2...XM of M independent NxN Gaussian random matrices in the limit N-->infinity is rotationally symmetric in the complex plane and is given by a simple expression rho(z,z)=1/Mpisigma(-2/M)|z|(-2+(2/M)) for |z|sigma. The parameter sigma corresponds to the radius of the circular support and is related to the amplitude of the Gaussian fluctuations. This form of the eigenvalue density is highly universal. It is identical for products of Gaussian Hermitian, non-Hermitian, and real or complex random matrices. It does not change even if the matrices in the product are taken from different Gaussian ensembles. We present a self-contained derivation of this result using a planar diagrammatic technique. Additionally, we conjecture that this distribution also holds for any matrices whose elements are independent centered random variables with a finite variance or even more generally for matrices which fulfill Pastur-Lindeberg's condition. We provide a numerical evidence supporting this conjecture.
منابع مشابه
Comparative Study of Random Matrices Capability in Uncertainty Detection of Pier’s Dynamics
Because of random nature of many dependent variables in coastal engineering, treatment of effective parameters is generally associated with uncertainty. Numerical models are often used for dynamic analysis of complex structures, including mechanical systems. Furthermore, deterministic models are not sufficient for exact anticipation of structure’s dynamic response, but probabilistic models...
متن کاملSingular values of Gaussian matrices and permanent estimators
We present estimates on the small singular values of a class of matrices with independent Gaussian entries and inhomogeneous variance profile, satisfying a broad-connectedness condition. Using these estimates and concentration of measure for the spectrum of Gaussian matrices with independent entries, we prove that for a large class of graphs satisfying an appropriate expansion property, the Bar...
متن کاملAsymptotic Products of Independent Gaussian Ran- Dom Matrices with Correlated Entries
In this work we address the problem of determining the asymptotic spectral measure of the product of independent, Gaussian random matrices with correlated entries, as the dimension and the number of multiplicative terms goes to infinity. More specifically, let {X p(N)}p=1 be a sequence of N × N independent random matrices with independent and identically distributed Gaussian entries of zero mea...
متن کاملOn the Spectrum of Sum and Product of Non-hermitian Random Matrices
In this note, we revisit the work of T. Tao and V. Vu on large non-hermitian random matrices with independent and identically distributed (i.i.d.) entries with mean zero and unit variance. We prove under weaker assumptions that the limit spectral distribution of sum and product of nonhermitian random matrices is universal. As a byproduct, we show that the generalized eigenvalues distribution of...
متن کاملThe norm of polynomials in large random and deterministic matrices
Let XN = (X (N) 1 , . . . , X (N) p ) be a family of N × N independent, normalized random matrices from the Gaussian Unitary Ensemble. We state sufficient conditions on matrices YN = (Y (N) 1 , . . . , Y (N) q ), possibly random but independent of XN , for which the operator norm of P (XN ,YN ,Y∗ N) converges almost surely for all polynomials P . Limits are described by operator norms of object...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 81 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2010